
© yismas kuse Be

Selecting other Jrees —OF TIMBER SPECLES

NESTOR O. GREGORIO ARTURO E. PASA
ROTACIO S. GRAVOSO
JOHN L. HERBOHN

A training guide on selecting mother trees for Q -Seedling production in smallhoder nursery

ALL RIGHTS RESERVED 2020

SELECTING MOTHER TREES OF TIMBER SPECIES
(Revised April 2020)
Nestor O. Gregorio, Arturo E. Pasa, Rotacio S. Gravoso,
\& John Herbohn
© 2009 VISCA Foundation for Agricultural Research and Development, Inc. and College of Forestry and Environmental Science, Visayas State University, Visca, Baybay City, Leyte, Philippines. All Rights Reserved.

ASEM 2016/103
Enhancing Livelihood Through Forest and Landscape Restoration

Published by the Visayas State University funded by the Australian Centre for International Agricultural Research, Watershed Rehabilitation Project, College of F orestry and Environmental Science, Visca, Baybay City, Leyte, Philippines.

Seedling Quality

The quality of planting stock is generally assessed based on two aspects physical quality and genetic quality

Figure 1. Main factors shaping-up seedling quality
Physical Quality
reflective of the nursery silvicultural treatments

Genetic Quality

based on the genetic make-up of the mother tree

1. Genotypic Characteristic - cannot be seen readily; total genetic inheritance
2. Phenotypic Characteristic - observable characteristics of an organism (including size, shape and color); interaction of genotype to the environment

Seed Sources

Seed sources - refer to individual trees or stands from which seeds are collected

1. Seed orchard - stands established for the specific purpose of seed production. Consist of families of superior genetic quality and planted at a regular spacing and specific design

* Should be established at least of 30 families from seed orchard
\& 2-3 thinning of poor trees will be done
\approx Isolation should be done to maintain the quality of seeds produced

2. Seed Production Areas - stands of trees either in natural forest or plantations that are improved for the specific purpose of seed production

* Improvement consists of selective thinning to achieve optimal spacing for seed production and to remove poor quality trees, including those that have been attacked by pests and diseases
* Thinning should be done so that the superior trees retained are evenly spaced
* Should be isolated from the contamination of pollen from undesirable stand of the same species
* As general rule, seed orchards and SPAs are isolated by a distance of at least 200 m

3. Seed stands - are groups of trees either in natural forests or plantations, identified as having superior characteristics such as straight stem form or rapid growth
\& Managed for seed production but seldom benefit from selective thinning or other management intended to improve the quality of seeds produced from the stand
4. Seed trees - are individual trees from which seed is collected, either in natural forest or tree plantations; most common source of germplasm for smallholder forestry

әшоs	әұ!ррәшәди!			ұนәшәธิหивш јО โəлə〕
әฺฺ!рәшıəџUI	poos КГIIP	poon	poos̊ K.İ\	Кұ! ¢¢иb pəәS
шощ sәəдр рәృәృәs	рәұsəұun (рәuu!ч! ло)рәиu!чıии 	рәұsәұun 'pәuu!̣\| ‘spuezs рәŋәәәS	səәц 	
рәџ!	рәџ!	рәџ!̣иәр!̣и рие рәџ!!uәрі	рәџ!	u!̣̊!.! pros
$\begin{array}{r} \text { uo!̣npo.dd } \\ \text { pəəs IoJ } 10 \mathrm{~N} \end{array}$	$\begin{array}{r} \text { uo!̣onpo.d } \\ \text { pəəs IoJ } 10 \mathrm{~N} \end{array}$	$\begin{array}{r} \text { uo!̣npo.dd } \\ \text { pəəs IoJ } 10 \mathrm{~N} \end{array}$	uo!̣npoıd paəs	asod.nnd suu!ueld
sәәцрәәS	рuæłspəәS		рıкцวıо pres	
	วง.Jnos	рәәS		

Common Practice

1. Germplasm used in smallholder seedling production is taken from unselected
mother trees; collected without the conscious selection of seed sources

Figure 3. poorly formed trees which are common seed sources of nuysoperators
2. Germplasm from poor trees will result to poor plantations

Figure 4. An example of plantation established using germplasm from unselected mother trees
3. Poor stem form commands low price of timber and low sawing recovery

Figure 8. Quality of timber and waste due to undesirable stem form

Figure 9. Desirable stem form of trees in a plantation

Assessment of the Phenotypic Characteristics of Mother Trees

Criterion	Parameter
Stem growth	Total height (m)
	Diameter at breast height (cm)
Stem form	Stem straightness
	Forking/stem branching
Circularity of the stem	
Branching characteristics	Tree health
	Branch angle Branch thickness
	Branch persistence

Grading Scale

$\mathbf{1}$	Very unacceptable
$\mathbf{2}$	Unacceptable
$\mathbf{3}$	Stem straightness
$\mathbf{4}$	Moderately acceptable
$\mathbf{5}$	Highly acceptable
$\mathbf{6}$	Ideal

$]^{\text {and }}$						
I	乙	ε	ฤ	\bigcirc	9	әрел
әреұдәээeun Kıəへ	әјqеıdәэวeu＠	әрqеұдәכэе Кјәұелоро～	әןqeıdeวэ丬	әрqедdәכэе К｜Чб！	ןеәpI	ssejp

This describes the position of the stem in relation to the vertical axis. Stem straightness is directly related to wood
quality. Figure 6 illustrates the stem forms and corresponding scores.

value of the wood. The degree of forking was rated according to the number of forked stems and the position of the
stem where the fork has developed. The degree of forking is illustrated in Figure 7 .
Forking and multiple stem leaders

I	乙	ε	ฤ	S	9	әреג
әрqеұдәэวeun Кıəへ		әןqедdәכэе Кןәцеләрој	әןqеұdеכว	әјqеұдәכэе Кјчб！н	ןеәрı	ssejp

[^0]| | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| prбewep $\% 001$ si umod） | рәбешер \％SL S！UMOג | $\begin{aligned} & \text { рәбешер } \\ & \text { \%0s } \\ & \text { s! uMoגכ } \end{aligned}$ | $\begin{gathered} \text { рәбешер } \\ \text { \%Sて } \\ \text { s! uModכ } \end{gathered}$ | $\begin{gathered} \text { рәбешер } \\ \text { \%0l } \\ \text { s! umor } \end{gathered}$ | рәбешер ұ0u uMO』 | рәбешер ұ0и имод） |
| | | | | | | |
| I | 2 | ε | ฤ | S | 9 | әрел |
| әряеддәכวeun Кぇəム | әреұфәээеиด | әןqеұdәכэе
 Кјәұеләроб | әрqеұdәวэマ | әןqełdәכэe Кјч6！н | ןеәрı | ssep |

әวиәцธ!รィəd чวиеля

		$\frac{0}{2}$
		$\begin{aligned} & \text { 与 } \\ & \hline 0 \\ & \hline 0 \end{aligned}$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \frac{0}{\circ} \\ & \frac{0}{\circ} \\ & \frac{0}{0} \\ & \frac{0}{0} \end{aligned}$
		$\begin{aligned} & 8 \\ & 8 \\ & \frac{8}{8} \\ & \frac{0}{9} \\ & \frac{0}{1} \end{aligned}$

Tally Sheet

Criterion	Points			
Stem straightness				
Stem branching				
Stem circularity				
Health				
Branch angle				
Branch thickness				
Branch persistence				
Mean score				

Example

Parameter

Stem straightness	5
Stem branching	4
Stem circularity	3
Health	6
Branch angle	5
Branch thickness	4
Branch pruning	5
Mean score	$4.6{ }^{\sim} 5=$ HIGHLY

Materials
R Tally Sheet
\& Pencil
\& Diameter T ape
es Hypsometer
2s Spray Paint
\& Bolo

														${ }_{5 z}^{\text {¢z }}$
														$\stackrel{+z}{\text { cien }}$
														$\stackrel{\varepsilon}{\text { z }}$
														\%
														${ }^{\circ}$
														61
														,
														4
														$\stackrel{9}{ }$
														tr
														$\stackrel{+1}{\varepsilon_{1}}$
														z
														\square
														$\stackrel{0}{ }$
														6
														8
														$\stackrel{4}{4}$
														$\stackrel{9}{5}$
														$\stackrel{5}{\square}$
														ε
														z
				$\begin{gathered} \text { suypuopig } \\ \text { wiays } \end{gathered}$	ssuuypiphn woris	$\begin{aligned} & \text { (uv) } \\ & \text { няa } \end{aligned}$	(${ }_{\text {(w) }}^{\text {HW }}$	($\begin{gathered}\text { (u) } \\ \text { H1 }\end{gathered}$	K80\|0u3Yd	$\begin{aligned} & (\mathrm{m}) \\ & \text { aH } \end{aligned}$	чпnu!z	$\begin{gathered} \text { aup }^{\text {uoumuo }} \end{gathered}$	$\begin{aligned} & \text { aubv } \\ & \text { apoon } \end{aligned}$	\%ou

NOTES

NOTES

[^0]:

 นоழฺวs sso．v meters interval along the length of the stem．Figure 7 presents various degrees of stem circularity as observed on the
 Normally，a tree exhibits a cylindrical stem．However，environmental and genetic factors affect stem development

